Amplitude modulation depth discrimination in hearing-impaired and normal-hearing listeners
نویسندگان
چکیده
The processing of amplitude modulations (AM) of sounds is assumed to be crucial for decoding and understanding of speech in humans. Since hearing-impaired (HI) listeners often suffer from severely hampered speech intelligibility, particularly in reverberant or noisy environments, they might also show degraded performance in AM processing tasks. However, several studies indicated a similar or even better performance in AM detection tasks for sensorineural HI listeners than for normal hearing (NH) listeners when reduced audibility was compensated. In addition to AM detection, this study investigates the differential processing of amplitude modulation depth in HI and NH listeners. AM-depth discrimination of a 4-, 8-, and 30-Hz sinusoidal AM, imposed on a 1or 4-kHz pure-tone carrier, was measured. The AM of the standard ranged from being well detectable to near threshold. AM-depth discrimination thresholds strongly varied among HI listeners and were elevated in comparison to NH for high standard depths. A model of AM processing is suggested incorporating an individually adjusted simulation of the auditory periphery. To account for the data of HI listeners, however, the key element appeared to be an increased internal noise in the AM-depth domain. Consequences for speech perception are discussed. Acoustics 08 Paris
منابع مشابه
Masking of tone bursts by modulated noise in normal, noise-masked normal, and hearing-impaired listeners.
Threshold of 4.6-ms tone bursts was measured in quiet and in the presence of a 100% sinusoidally amplitude-modulated speech-shaped noise. For the modulated-noise conditions, the onset of the tone burst coincided either with the maximum or the minimum modulator amplitude. The difference in these two masked thresholds provided an indication of the psychoacoustic modulation depth, or the modulatio...
متن کاملCritical bandwidth for phase discrimination in hearing-impaired listeners.
Monaural phase discrimination was evaluated in normal-hearing and hearing-impaired listeners as a function of the frequency separation among components in three-tone complexes. The phases of the center components of 100% sinusoidal amplitude-modulated (SAM) waveforms were shifted by 90 degrees to yield quasi-frequency-modulated (QFM) waveforms that had identical long-term spectra but different ...
متن کاملPerception of stochastic envelopes by normal-hearing and cochlear-implant listeners
We assessed auditory sensitivity to three classes of temporal-envelope statistics (modulation depth, modulation rate, and comodulation) that are important for the perception of 'sound textures'. The textures were generated by a probabilistic model that prescribes the temporal statistics of a selected number of modulation envelopes, superimposed onto noise carriers. Discrimination thresholds wer...
متن کاملPerception of roughness by listeners with sensorineural hearing loss.
The perception of auditory roughness presumably results from imperfect spectral or temporal resolution. Sensorineural hearing loss, by affecting spectral resolution, may therefore alter roughness perception. In this study, normal-hearing and hearing-impaired listeners estimated the roughness of amplitude-modulated tones varying in carrier frequency, modulation rate, and modulation depth. Their ...
متن کاملSpectral-peak selection in spectral-shape discrimination by normal-hearing and hearing-impaired listeners.
Spectral-shape discrimination thresholds were measured in the presence and absence of noise to determine whether normal-hearing and hearing-impaired listeners rely primarily on spectral peaks in the excitation pattern when discriminating between stimuli with different spectral shapes. Standard stimuli were the sum of 2, 4, 6, 8, 10, 20, or 30 equal-amplitude tones with frequencies fixed between...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014